Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism.

نویسندگان

  • Akiko Maruyama-Nakashita
  • Yumiko Nakamura
  • Takayuki Tohge
  • Kazuki Saito
  • Hideki Takahashi
چکیده

Sulfur is an essential macronutrient required for plant growth. To identify key transcription factors regulating the sulfur assimilatory pathway, we screened Arabidopsis thaliana mutants using a fluorescent reporter gene construct consisting of the sulfur limitation-responsive promoter of the SULTR1;2 sulfate transporter and green fluorescent protein as a background indicator for monitoring plant sulfur responses. The isolated mutant, sulfur limitation1 (slim1), was unable to induce SULTR1;2 transcripts under low-sulfur (-S) conditions. Mutations causing the sulfur limitation responseless phenotypes of slim1 were identified in an EIL family transcription factor, ETHYLENE-INSENSITIVE3-LIKE3 (EIL3), whose functional identity with SLIM1 was confirmed by genetic complementation. Sulfate uptake and plant growth on -S were significantly reduced by slim1 mutations but recovered by overexpression of SLIM1. SLIM1 functioned as a central transcriptional regulator, which controlled both the activation of sulfate acquisition and degradation of glucosinolates under -S conditions. Metabolite analysis indicated stable accumulation of glucosinolates in slim1 mutants, even under -S conditions, particularly in the molecular species with methylsulfinylalkyl side chains beneficial to human health. Overexpression of SLIM1 and its rice (Oryza sativa) homologs, but no other EIL genes of Arabidopsis, restored the sulfur limitation responseless phenotypes of slim1 mutants, suggesting uniqueness of the SLIM1/EIL3 subgroup members as sulfur response regulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family

Sulfur limitation 1 (SLIM1), a member of the EIN3-like (EIL) family of transcription factors in Arabidopsis, is the regulator of many sulfur deficiency responsive genes. Among the five other proteins of the family, three regulate ethylene (ET) responses and two have unassigned functions. Contrary to the well-defined ET signaling, the pathway leading from sensing sulfate status to the activation...

متن کامل

Transceptors at the boundary of nutrient transporters and receptors: a new role for Arabidopsis SULTR1;2 in sulfur sensing

Plants have evolved a sophisticated mechanism to sense the extracellular sulfur (S) status so that sulfate transport and S assimilation/metabolism can be coordinated. Genetic, biochemical, and molecular studies in Arabidopsis over the past 10 years have started to shed some light on the regulatory mechanism of the S response. Key advances in transcriptional regulation (SLIM1, MYB, and miR395), ...

متن کامل

Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency

To balance the flux of sulfur (S) into glucosinolates (GSL) and primary metabolites plants exploit various regulatory mechanisms particularly important upon S deficiency (-S). The role of MYB34, MYB51 and MYB122 controlling the production of indolic glucosinolates (IGs) and MYB28, MYB29, and MYB76 regulating the biosynthesis of aliphatic glucosinolates (AGs) in Arabidopsis thaliana has not been...

متن کامل

A Contribution to Identification of Novel Regulators of Plant Response to Sulfur Deficiency: Characteristics of a Tobacco Gene UP9C, Its Protein Product and the Effects of UP9C Silencing

Extensive changes in plant transcriptome and metabolome have been observed by numerous research groups after transferring plants from optimal conditions to sulfur (S) deficiency. Despite intensive studies and recent important achievements, like identification of SLIM1/EIL3 as a major transcriptional regulator of the response to S-deficiency, many questions concerning other elements of the regul...

متن کامل

Links Between Ethylene and Sulfur Nutrition—A Regulatory Interplay or Just Metabolite Association?

Multiple reports demonstrate associations between ethylene and sulfur metabolisms, however the details of these links have not yet been fully characterized; the links might be at the metabolic and the regulatory levels. First, sulfur-containing metabolite, methionine, is a precursor of ethylene and is a rate limiting metabolite for ethylene synthesis; the methionine cycle contributes to both su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 11  شماره 

صفحات  -

تاریخ انتشار 2006